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Following on from a previous paper [1], work is presented in which the distributed forces
exhibited between a box and its top and recipient are simpli"ed by the introduction of
assumed uniform distributions. The box consists of four side-walls, the recipient is a thick
in"nite plate, and the model is completed with a thin in"nite top-plate attached via a roller
condition. The introduction of a roller coupled in,nite top-plate is motivated by the hypothesis
that losses associated with wave propagation into its outlying region equate, approximately, to
losses inherent in a fully coupled ,nite top-plate associated with wave conversion (at the
coupled boundaries) and then divergence and dissipation (within the structure). Comparisons
with experimental results are presented which corroborate the hypothesis. When uniform force
distributions are assumed the study indicates that the transmitted power can be reliably
calculated up to the "rst two or three resonances and, for higher wavenumbers, that the overall
trend can be predicted. A constraint to this conclusion is, however, that strongly excited,
anti-symmetric modes cannot be predicted. Analytical studies in which the box is reduced to
a circular can are also performed and the results indicate that this simpli"cation is valid when the
requirement is for a simple estimate of the overall trend of the power. Overall, therefore, the
paper proposes several possibilities through which models of built-up systems can be simpli"ed.
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1. INTRODUCTION

In previous work [1] the analysis of box-like structures was simpli"ed by assuming the
forces manifested at the side-wall/top-plate and side-wall/recipient-plate interfaces were
uniform. The approach was considered promising since the simpli"ed models proved
reliable up to the second longitudinal resonance of the side-walls, provided that the
magnitude of the uniform force distributions were the spatial averages of the true
distributed forces. In an attempt to develop this "nding for practical use, the introduction of
an in"nite top-plate onto the box is considered (see Figure 1). Whilst initially such a step
may appear irregular, it is logical since the box in the previous paper was &&incomplete'' in
that only prescribed force distributions (obtained from a simply supported plate) were
imposed on the upper edges of the side-walls. The previous box therefore lacked a coupled
top-plate and so the introduction of a top-plate &&completes'' the box.

The question of why an in"nite as opposed to a "nite top-plate is introduced is partially
answered in reference [2] which suggests that when two plates are coupled perpendicular to
each other and the ratio of their thicknesses exceeds 2 : 1 the e!ect of moments can,
depending upon which plate is thickest, either be ignored or accounted for by a simple
-Present address: Institut fuK r Technische Akustik, Technische UniversitaK t Berlin, 10587 Berlin, Germany.
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Figure 1. In"nite top-plate of the box.
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modi"cation of the boundary condition. Under these conditions the introduction of an
in"nite top-plate is valid since the moment-induced power propagates to an outlying region
and so, in agreement with reference [2], it is essentially omitted from the model. Thus, under
the proviso that the ratio of top-plate thickness to side-plate thickness is 2 : 1 or larger an
in"nite top-plate, attached via a roller condition, can be introduced into the model. When
the two plates have the same thickness, moments do however assume importance [2] and
the introduction of an in"nite top-plate attached via a roller condition has to be examined
more closely. Under this condition, it is therefore noted that for a physical box, which has
a "nite and fully coupled top-plate, much wave conversion occurs at the boundaries
(bending wave to in-plane wave and vice versa). This is in contrast to the author's simpli"ed
model in which only bending waves occur in the top- and recipient-plates and only
longitudinal waves occur in the side-walls. Thus, it is conjectured that the losses in a real
box associated with dissipation and divergence can equate approximately to the losses
in the model associated with the moment-induced power propagating to the outlying
region of the in"nite top-plate. If this is so the model can be considered equivalent to an
actual box.

2. AN INFINITE TOP-PLATE

To model a box sandwiched between two in"nite plates a mobility approach can be used.
For this method the system is "rst deconstructed into simpli"ed elements for which
mathematical descriptions can be developed and then the built-up structure reconstructed
using these elementary components. This technique is useful since it o!ers an analytical
rather than a numerical solution with the subsequent advantage that some insight into the
salient physical behaviour of the structure can then be deduced. For the sandwiched box,
two elementary components, a side-wall and an in"nite plate, are designated as the
sub-components of the whole.

As in a previous paper [1] the side-wall is considered to have only in-plane motion and to
have a roller condition for its vertical edges. For point excitation its mobility is given by
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Figure 2. Discretization of all interfaces.
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The mobility of the thin in"nite plate, subject to transverse point excitation is given in
reference [4] as
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With the above mobility functions de"ned for discrete excitation and response positions, it
is convenient to reconstruct the box mathematically using a series of discrete point
connections along the line interfaces (see Figure 2). In this manner, the continuous
distributions can be synthesized provided that the Nyquist criterion (two points per
wavelength) is met. The discrete forces acting at the upper and lower edges of the box can
then be determined using

[FL
11

]

[FL
22

]

[FL
33

]

[FL
44

]

[FU
11

]

[FU
22

]

[FU
33

]

[FU
44

]

"

[YL
s11

#YL
r11

] [YL
r21

] [YL
r31

] [YL
r41

] [YUL
s11

] [0] [0] [0]

[YL
r12

] [YL
s22

#YL
r22

] [YL
r32

] [YL
r42

] [0] [YUL
s22

] [0] [0]

[YL
r13

] [YL
r23

] [YL
s33

#YL
r33

] [YL
r43

] [0] [0] [YUL
s33

] [0]

[YL
r14

] [YL
r24

] [YL
r34

] [YL
s44

#YL
r44

] [0] [0] [0] [YUL
s44

]

[YUL
s11

] [0] [0] [0] [YU
s11

#YU
t11

] [YU
t21

] [YU
t31

] [YU
t41

]

[0] [YUL
s22

] [0] [0] [YU
t12

] [YU
s22

#YU
t22

] [YU
t32

] [YU
t42

]

[0] [0] [YUL
s33

] [0] [YU
t13

] [YU
t23

] [YU
s33

#>U
t33

] [YU
t43

]

[0] [0] [0] [YUL
s44

] [YU
t14

] [YU
t24

] [YU
t34

] [YU
s44

#YU
t44

]

~1

]

[0]

[0]

[0]

[0]

[YU0
t11

]F0

[YU0
t22

]F0

[YU0
t33

]F0

[YU0
t44

]F0

, (3)



900 R. A. FULFORD AND B. A. T. PETERSSON
where [YL
smm

#YL
rmm

] is a sub-matrix designating the summation of the side-wall and
recipient mobilities at the lower edge (¸) of the side-wall m, and
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In Equation (4) N is the number of points in the line discretization and the individual
mobility terms for the side-wall YLx,xn

smn
and for the recipient plate YLx,xn

rmn
are established from

Equations (1) and (2) respectively. Similarly, [YL
rmmx

] is a sub-matrix describing the transfer
mobilities of the recipient between the lower edges of side-wall m and n whilst [YUL

smm
]

constitutes the transfer mobilities between the upper and the lower edges of side-wall m.
[YU

tmm
] de"nes the transfer mobilities between the upper edges of the side-walls m and n via

the top-plate and [YU0
tmm

] contains the transfer mobilities of the top-plate between the input
force and the upper edge of side-wall m. F0 is the input force and [FU

mm
] and [FL

mm
] de"ne the

forces at the upper and lower edges of side-wall m respectively.
Upon solving for the forces, the power can then be calculated at, for example, the position

of the input (excitation) force,
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or, at the lower edge of the box,
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Where the forces acting at both the upper and lower interfaces of the side-walls are
simpli"ed to have a uniform distribution (see Figure 3), an e!ective strip mobility approach
[5] can be introduced to simplify the above formulations (see reference [1]).

For the side-walls the e!ective strip mobilities are de"ned by
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where for side-wall m, >U,L,UL
smm

(p Dp@) is the mobility at either the upper (;) or lower (¸)
interface or the mobility across (;¸) the side-wall. The double integral is along the direction
x for side-walls 1 and 3 and along z for side-walls 2 and 4.

For the recipient plate, the e!ective strip mobilities are
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Figure 3. Uniform force distributions along each of the edges.
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where >L
rmn

(p Dp@) is either the mobility along the interface m or between the interfaces
m and n.

For the top-plate, two sets of e!ective strip mobilities are needed, one to describe the
interfaces along the side-walls and the other to describe the transfer through the top-plate
from the input force to the side-wall. The former are given by
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and the latter, for a point input force and thus involving only one integral, by
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Using the e!ective strip mobilities, an expression analogous to equation (3) can be developed:
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where the magnitudes of the spatially assumed uniform force distributions are determined
rather than the distributed forces along the interface.

Using the e!ective strip mobility formulation, the expressions analogous to equations (5)
and (6) (i.e. from which the estimates of the input power and the power through the lower
edge of the box can be calculated) are found to be

Q0"1
2
M>00

t
F0#>U0

t11
FU

11
#>U0

t22
FU
22
#>U0

t33
FU
33
#>U0

t44
FU

44
NF0* (12)

and

QL
nn
"1

2
M>RUL

s1n
FU
11
#>RUL

s2n
FU
22
#>RUL

s3n
FU
33
#>RUL

s4n
FU
44
#>RL

s1n
FL
11
#>RL

s2n
FL
22

#>RL
s3n

FL
33
#>RL

s4n
FL

44
NFL*

nn
(13)

respectively. Accordingly, such a formulation becomes equivalent to a four-point coupling
problem.

In addition to the simpli"cation of a unique uniform distribution acting at the upper and
lower interfaces of each of the side-walls, a greater simpli"cation can be introduced in which
the same uniform force distribution is considered to act upon all four of the side-walls
simultaneously (see Figure 4). In this case, an overall e!ective strip mobility has to be
de"ned to account for all of the coupling between all of the four interfaces. This can be
achieved easily by extending the integrations of the above e!ective strip mobilities to
encompass the entire perimeter of the box that is
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Figure 4. Uniform force distribution around the perimeter.
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Analogous to equations (3) and (11) the estimated uniform force magnitudes are then
given by
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and the expressions for the input power and for the power through the lower edge of the
side-walls reduce to
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and
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respectively. These are analogous to the single-point, single-component case.
For a box of dimension 2l

y
by l

y
and height l

y
, constructed of plates of thickness 0)02l

y
and

attached to a 2l
y
thick recipient plate, the complete transmitted input power=

complete
(that

is, the real part of equation (5)) is shown in Figure 5 for a point force positioned at the centre
of the top-plate. The estimate obtained assuming a uniform force distribution along each of
the side-wall interfaces=

YRside
(i.e., the real part of equation (12)) and the estimate assuming

a uniform force distribution around the entire perimeter of the box=
YRall

(i.e., the real part
of equation (19)) are also shown. In Figure 6 the imaginary components of the three input
powers are presented. In all these Figures, normalization is with respect to the power
resulting from a point force applied directly to the recipient plate.

For=
complete

a sti!ness controlled region (associated with deformation of the top-plate) is
seen followed by a resonant region. It can be expected that resonances for k

L
l
y
(n/2 are

only associated with the enclosed area of the top-plate whilst for k
L
l
y
'"n/2 the in-plane

characteristics of the side-walls will also have an in#uence. For very high k
L
l
y
the enclosed

area of the recipient plate can also be expected to assume importance.
=

YRside
is seen to overestimate the power in the sti!ness region, but to estimate the "rst

three resonances and the overall trend of the power in the resonant region. In the context of
the model having application at a preliminary design stage, the prediction of the resonances
is considered adequate because their distinct frequencies can be discerned clearly. The
observation that the level of the fundamental and the third resonances are captured but that
the level of the second is not does indicate a limitation with respect to detailed design work.
For such applications the approach could be extended to include additional orders of the
force distributions Fourier series. Inclusion of the "rst order term would, for example,
enable the force distribution at the second resonance to be mimicked more accurately and
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therefore the level at this frequency to be estimated more reliably. The inclusion in the
estimate of only the uniform, zero order, component also explains the discrepancy in the
sti!ness region since at these wavenumbers, the &&tails'' of many of the higher order
components will also make a contribution. Whilst in this &&long wavelength'' region the
limited spatial variations tend to favour a uniform force assumption, an even better estimate
would be possible were these &&tails'' accounted for when determining the level.

For =
YRall

even greater overestimation is observed in the sti!ness region and the
prediction of the resonances is poorer. However the estimate is reliable with respect to the
trend of the power; in particular this is noticeable for k

L
l
y
'1 indicating that a di!use

wave"eld is approached in the top-plate for these wavenumber.
Results for the power transmitted through the lower edge of the box and into the recipient

plate are shown in Figure 7. For k
L
l
y
(0)1 (corresponding to the sti!ness-controlled region

of the input power) it is noted that=
YRside

and=
YRall

both estimate=
complete

more reliably
than for the input power calculation. The reason for this is that the &&thick'' recipient plate is
such that it restrains the deformation of the structure at the lower interface of the box. In
contrast to the side-wall/&&thin'' top-plate interface, the di!erences between the responses
imposed by the estimates and the response of the complete solution are, therefore, similarly
restrained. Regarding the estimation of the resonant region,=

YRside
is seen to capture with

respect to both magnitude and wavenumber the "rst resonance but to capture the third
resonance only with respect to wavenumber. The second resonance is barely determined at
all. This contrasts slightly with that seen for the input power where both the "rst and third
resonances were captured with respect to both magnitude and wavenumber and the second
with respect to wavenumber. For =

YRall
the "nding is that none of the resonances are

reliably estimated. This is in accordance with that seen for the input power. The result that
both=

YRside
and =

YRall
are reliable with respect to the overall trend is similar.

The e!ect of moving the point force to a non-central position introduces anti-symmetric
modes into the system. A uniform force distribution is clearly di!erent from any
non-symmetric condition and therefore further discrepancies can be anticipated between
= and the estimates= R and= R . The real and imaginary components of the
complete Y side Y all
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input power at (0)4l
x
, 0)4l

z
) are shown in Figures 8 and 9 respectively. Compared with the

centrally excited case (Figures 5 and 6) it is observed that although further modes, i.e., the
anti-symmetric, are indeed evident, the discrepancies between the estimates and =

complete
are not noticeably larger. Moreover, for broadband excitation, it could be argued that the
increased modal density, and thereby increased distribution of vibrational energy amongst
more modes, is such that in an overall sense the discrepancies have been reduced.
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The corresponding result for the power transmitted through the lower interface of the
box is shown in Figure 10. As for the input power =

YRside
is seen to capture reliably the

sti!ness region and the "rst resonance and the overall trend for higher wavenumbers.
The result for =

YRall
is less promising where for k

L
l
y
'1 there is a tendency for it to

underestimate the power. This is not seen for the input power.
If the point force is positioned close to an edge or a corner its character can be expected

intuitively to have greater in#uence upon the force distributions at the nearby edges than at



Figure 11. Exaggerated force distribution for point force positioned close to a corner.
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remote ones. If, for example, the wavelength is large compared with the distance to the
nearest edge then distinctly non-uniform force distributions over the four edges can be
expected (see Figure 11). In Figure 12 the power through the lower edge is therefore shown
for a point excitation force positioned at the corner (0)1l

x
, 0)1l

z
).

In contrast to intuition, the in#uence of position upon the estimate is only weak and
indeed signi"cant only for wavenumbers around the "rst and second resonances, whereby
=

YRside
and =

YRall
have a tendency to overestimate the power. As a consequence of the

wave"eld being di!use the in#uence is negligible for the higher wavenumber. Increased
di!usivity at high wavenumbers attenuates this.

Finally, in Figure 13 the power transmitted through the lower edge is shown for a square
top-plate with an excitation force at (0)4l

x
, 0)4l

z
). As a result of the changed model response

=
YRside

is now seen to estimate reliably the "rst four resonances.=
YRall

reliably estimates
the "rst and the third resonances. For these wavenumbers the response is symmetrical
about both of the plane axis with a piston-like action and so a uniform force distribution
imposed upon the perimeter constitutes an appropriate approximation (see Figure 14). For
larger k

L
l
y

the discrepancies between =
complete

and the two estimates are similar to those
seen for all the other cases. This is indicative of the modal overlap being similar for both the
square and rectangular models.
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Figure 14. Piston-like action for the "rst mode of a square plate; (*) velocity distribution, () ) )) force
distribution.
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3. COMPARISON WITH EXPERIMENTAL DATA

To corroborate the arguments tested in the study, a comparison can be made with results
from an experimental set-up. Whilst, clearly, some discrepancies can be expected due to the
simpli"cations introduced into the model it has also to be considered that discrepancies
related to di!erences in dimension and material parameters are also possible. Consider, for
example, the elementary structure of a simply supported plate where its dimensions are
composed of thickness (h), l

x
and l

y
, and its material properties of E, o and l. Appreciating

that measurement of some or all of these properties are subject to errors implies that small
deviations from their true values must be expected. To assess the in#uence of such
&&inherent'' variations, random errors can be introduced into a numerical model of the plate
and a sample population of, for example, the eigenfrequencies,

u
mn
"A

h3E

12(1!l2)ohB
0>5

CA
mn
l
x
B
2
#A

nn
l
y
B
2

D , (21)

can be calculated. Hence, for a variation of up to 1% introduced into l
x
, l

y
, E, h, and

o (though not l) and a sample population of 2500, probability densities of the plates
eigenfrequencies are shown in Figure 15. Signi"cantly, it is seen that only the "rst two



Figure 15. Overlap of eigenfrequencies for simply supported plate when up to 1% variation is introduced into
material properties and dimensions.
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eigenfrequencies have distinct distributions with negligible overlap. For the third
eigenfrequency the distribution has some overlap with the fourth whilst for the fourth and
above the overlapping of adjacent distributions is severe. The numerical exercise reveals
therefore that for even a notionally simple structure a numerical model can, without a very
exact description of the basic dimension and material parameters, only be expected to be
reliable up to the "rst two or three natural frequencies. It can thus be argued that con"dence
can be assigned to the box model provided that it captures the "rst/second natural
frequencies of a physical system together with the overall trend and any grouping of
resonances. Details further than this are deemed too sensitive to the many parameters.

For a Perspex box of dimension 0)27 m]0)41 m]0)33 m (all plates 0)01 m thick)
attached to a "nite recipient plate of dimension 2 m]3 m (0)01 m thick) the input power for
two positions has been measured [6]; position 1 at (0)131 m, 0)197 m) and position 2 at
(0)088 m, 0)115 m). Assuming material properties of E"6)5E9 N/m2, o"1180 Kg/m3,
l"0)3 and g"0)05 (as established from measurement in concurrent work employing
Perspex models) the corresponding results from the mathematical model were calculated
(see Figures 16 and 17). The discussion begins by comparing the experimental result with
=

complete
.

For position 1, the measured response shows a mass-controlled region followed by
a sti!ness-controlled region and then four distinct resonance groups. Since an in"nite
recipient plate has been used in the numerical model and a "nite plate in the experiment, the
experimental result shows a mass controlled region whilst the low-frequency trend of
=

complete
is the characteristic mobility of the receiver. The initial sti!ness controlled region

leading to the fundamental resonance observed in the experimental result is, however,
approximated by the model. Concerning the resonances, the model does not trace the
individual peaks but does capture the four distinct groups. The fact that the individual
measured resonances are not seen in the model result stems from the simpli"cations
introduced for the boundary conditions of the top plate.

The comparison reveals, therefore, that the very simple model developed has limitations if
&&accurate'' predictions of resonance levels are required, but clear application for
preliminarily studies in which only the salient features are needed.



Figure 16. Measured input power (- - -),=
complete

(=),=Rside
(*) and=Rall

(*) for Perspex box at position 1 [6].

Figure 17. Measured input power (- - -),=
complete

(=),=Rside
(*) and=Rall

(*) for Perspex box at position 2 [6].
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It is of interest to note that the magnitude of the fundamental resonance is not matched
exactly by=

complete
. This reveals that di!erences exist between the losses in the experimental

set-up and those of the mathematical model. However, appreciating the sensitivity of the
magnitude of the fundamental resonance to structural losses, together with the inherent
di$culties of predicting these at a design stage, it can be argued that the discrepancy is
acceptable. The observation that =

complete
captures the overall trend of the measurement

also indicates that for other than strong resonances the moment associated power is
&&mainly'' dissipated within the experimental system.



Figure 18. The rectangular &&box'' converted to a circular &&can''.
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For position 2, =
complete

mimics the leading sti!ness controlled region and the
fundamental resonance. Also, the two distinct resonance groups (centred at 500 and 900 Hz)
are captured and the overall trend is reliable. This is similar to that seen for position 1.
Based upon the comparisons of the two positions, it is suggested that con"dence can be
assigned to the mathematical model.

For position 1,=
YRside

predicts the leading sti!ness-controlled region together with the
frequency of the fundamental resonance. It also predicts the frequency of the second
resonance together with the overall trend. For position 2, the fundamental resonance is
predicted together with the overall trend. The accuracy of the sti!ness controlled region and
the second resonance is, however, poor.

For both positions=
YRall

does not predict with accuracy the initial sti!ness-controlled
region nor any of the resonance groups. It is however accurate with respect to the overall
trend.

4. A CIRCULAR BOX

Since structures with a circular shape are, compared with rectangular geometries, simpler
to describe mathematically it is useful to consider a model of a circular box (that is a &&can'')
and to compare forthcoming results with those from the box. If there is compatibility
between the two, the opportunity exists for a greatly simpli"ed model in which the four
side-walls are reduced to a simple cylinder. Upon adapting the present model to a circular
form by simply &&wrapping'' the side-walls into a circle (see Figure 18) the input power for
three di!erent cans are compared with that for a box in Figure 19. With regard to
dimension, Can 1 has a diameter equal to the longest length of the box, Can 2 has the
perimeter equal to that of the box and for Can 3 the area of the can and the area of the box
are equal. These three criteria were used because they are the most evident ways in which
circular and rectangular geometries can be related to each other.

It is seen that none of the three cans capture either the sti!ness-controlled region or the
fundamental resonance of the box. However, both the &&equal perimeter'' and &&equal length''
cans mimic the second and third resonances of the box and both also capture the overall
trend at high wavenumbers. Despite di!erences in signature, all of the models do have the
same character for the input power in each case which can be considered to consist of
a fundamental resonance, a second resonance, a group of resonances and "nally a region
characterized by high model overlap.

To assess whether the compatibility between the box and can models is poor in the
sti!ness region and at the fundamental resonance because of the &&extreme'' rectangular
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form of the box, results for a square box are also presented (see Figure 20). Though
predictions of the fundamental resonance are reliable for the &&equal length'' and &&equal
area'' cans, those in the sti!ness-controlled region are overestimated. For the resonances
the observation is, as for the rectangular box, that their character has similar grouping for
all models.
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5. CONCLUDING REMARKS

With a view to obtain an analytical model suitable for engineering design applications,
the vibrational power in box-like structures has been studied. For estimates of the power
input into the top-plate and the power transmitted to the recipient plate

f The box can be considered to be constructed of (a) four side-walls each carrying only
in-plane waves and each with only elementary &&roller'' boundary conditions at the
vertical edges, and (b) an in"nite top-plate only attached to the side-walls with respect
to translational forces. This is, because experimental results show that the losses in
a &&true'' box associated with wave conversion and then divergence and dissipation, can
agree, approximately, with divergence in the model associated with the power
propagating to the outlying region of the in"nite top-plate.

f Numerical results show that for frequencies up the second/third resonance, the force
distributions along the upper and lower edges of the box can be considered uniform.
Provided that the necessary e!ective strip mobilities are obtained, the model reduces to
a problem of eight unknowns. A proviso is that for the input power there is some
overestimation of the transmission in the sti!ness-controlled region. Also, strongly
excited and distinct resonances associated with antisymmetric modes are not captured.

f For frequencies above the fundamental resonance, the overall trend can be captured by
assuming that the force distributions around the upper and lower perimeters of the box
are uniform. This simpli"cation is also suitable for frequencies where the top-plate
exerts a piston-like force distribution; that is, the fundamental frequency for a square
top-plate. If the overall e!ective strip mobilities are obtained this reduces the model to
be a problem of only two unknowns.

f For accurate predictions of signature, it seems that a box cannot be simpli"ed to
a circular can. Such a conversion can, however, be useful with respect to predictions of
the characteristic grouping of the resonances and of the overall trend.

f That the above conclusions are consistent for both a thick recipient plate (the
numerical work) and a thin recipient plate (the experimental work) con"rms that the
thickness ratio is not pivotal for the proposed simpli"cations. The range of
applications in engineering practice is, therefore, large.
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APPENDIX A: NOMENCLATURE

E Young's modulus
F force
H Hankel function
Q complex power
= transmitted power
> mobility
h thickness
i imaginary unit
k wavenumber
l linear length
m, n modal number
p spatial point
r radial length
x, y, z co-ordinates
g loss factor
l Poisson ratio
u angular frequency

Indices
0 input force position
B bending wave
¸ lower edge of side-wall
N number of points in the discretization
OR overall e!ective mobility
; upper edge of side-wall
m,n side plate number
r recipient plate
s side-wall
t top-plate
R e!ective mobility

Notation
* complex conjugate
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